

Medan Elektromagnetik

W10

Magnetostatik

Reza Diharja, S.Si., M.T. | Prodi Teknik Elektro | Universitas Jayabaya

Outline Presentasi

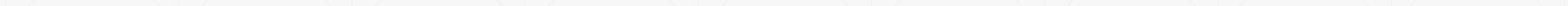
10.1 Magnetostatik

10.2 Gaya dan Torsi Magnetik

10.3 Hukum Biot-Savart

10.3.1 *Magnetic Field Due to Surface and Volume Current Distributions*

10.3.2 *Magnetic Field of a Magnetic Dipole*



Magnetostatik

Magnetostatics parallels the preceding one on electrostatics. Stationary charges produce static electric fields, and steady (i.e., non-time-varying) currents produce static magnetic fields. When $\partial/\partial t = 0$, the magnetic fields in a medium with magnetic permeability μ are governed by the second pair of Maxwell's equations:

$$\nabla \cdot \mathbf{B} = 0 \quad (10.1)$$

$$\nabla \times \mathbf{H} = \mathbf{J} \quad (10.2)$$

$$\mathbf{B} = \mu \mathbf{H} \quad (10.3)$$

▲ Furthermore, $\mu = \mu_0$ for most dielectrics and metals (excluding ferromagnetic materials). ▲

\mathbf{J} = current density / kerapatan arus.

\mathbf{B} = magnetic flux density / kerapatan fluks magnet

\mathbf{H} = magnetic field intensity / intensitas medan magnet

Gaya dan Torsi Magnetik

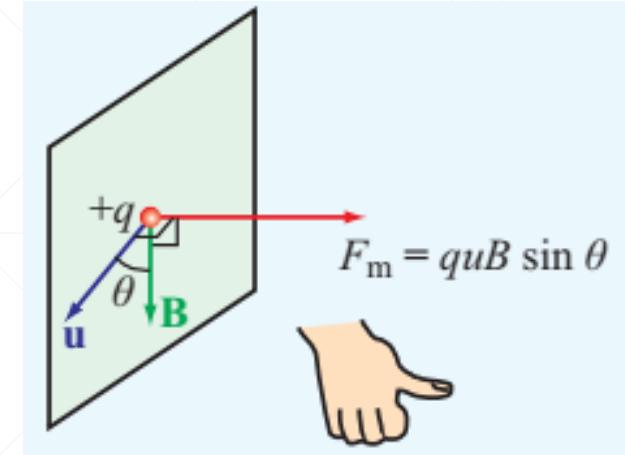
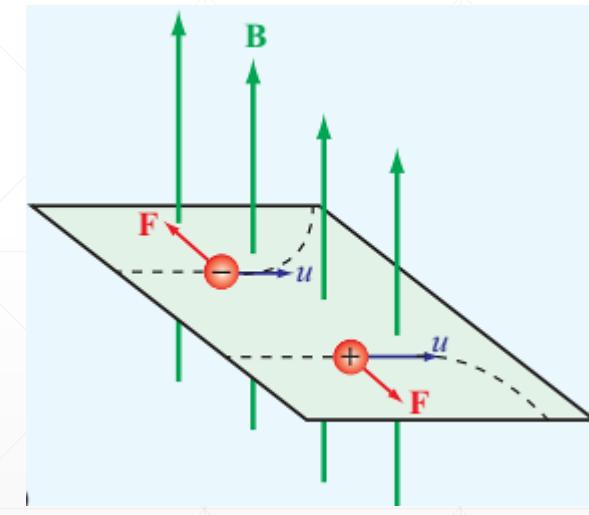
- We now define the **magnetic flux density** \mathbf{B} at a point in space in terms of the **magnetic force** \mathbf{F}_m that acts on a charged test particle moving with velocity \mathbf{u} through that point.
- Experiments revealed that a **particle of charge q** moving with **velocity \mathbf{u}** in a **magnetic field** experiences a **magnetic force** \mathbf{F}_m given by:

$$\mathbf{F}_m = q\mathbf{u} \times \mathbf{B} \quad (10.4)$$

$$F_m = quB \sin\theta \quad (10.5)$$

$$\mathbf{F} = \mathbf{F}_e + \mathbf{F}_m = q\mathbf{E} + q\mathbf{u} \times \mathbf{B} = q(\mathbf{E} + \mathbf{u} \times \mathbf{B}) \quad (10.6)$$

θ = sudut yang terbentuk antara \mathbf{u} dan \mathbf{B}



Gambar 10.1 (atas) The direction of the magnetic force exerted on a charged particle moving in a magnetic field is (a) perpendicular to both \mathbf{B} and \mathbf{u} and (bawah) depends on the charge polarity (positive or negative).

Attribute	Electrostatics	Magnetostatics
Sources	Stationary charges ρ_v	Steady currents \mathbf{J}
Fields and Fluxes	\mathbf{E} and \mathbf{D}	\mathbf{H} and \mathbf{B}
Constitutive parameter(s)	ϵ and σ	μ
Governing equations		
• Differential form	$\nabla \cdot \mathbf{D} = \rho_v$ $\nabla \times \mathbf{E} = 0$	$\nabla \cdot \mathbf{B} = 0$ $\nabla \times \mathbf{H} = \mathbf{J}$
• Integral form	$\oint_S \mathbf{D} \cdot d\mathbf{s} = Q$ $\oint_C \mathbf{E} \cdot d\mathbf{l} = 0$	$\oint_S \mathbf{B} \cdot d\mathbf{s} = 0$ $\oint_C \mathbf{H} \cdot d\mathbf{l} = I$
Potential	Scalar V , with $\mathbf{E} = -\nabla V$	Vector \mathbf{A} , with $\mathbf{B} = \nabla \times \mathbf{A}$
Energy density	$w_e = \frac{1}{2} \epsilon E^2$	$w_m = \frac{1}{2} \mu H^2$
Force on charge q	$\mathbf{F}_e = q\mathbf{E}$	$\mathbf{F}_m = q\mathbf{u} \times \mathbf{B}$
Circuit element(s)	C and R	L

Hukum Biot-Savart

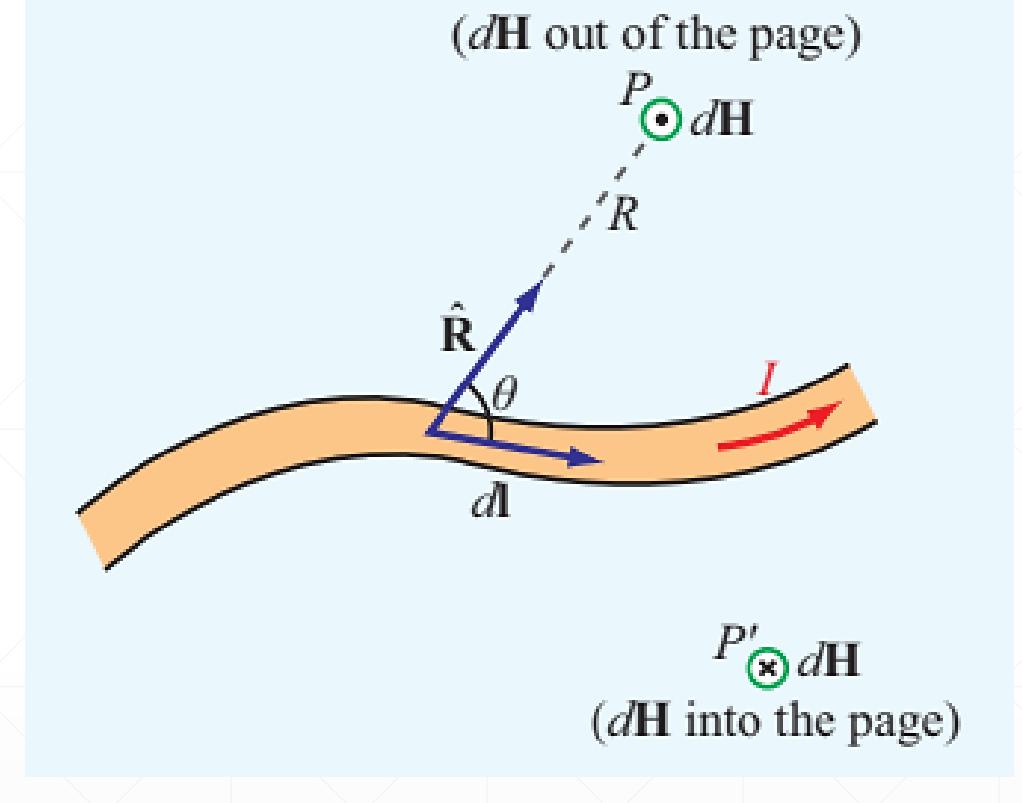
The Biot-Savart law states that the differential magnetic field $d\mathbf{H}$ generated by a steady current I flowing through a differential length vector $d\mathbf{l}$ is:

$$d\mathbf{H} = \frac{I}{4\pi} \frac{d\mathbf{l} \times \hat{\mathbf{R}}}{R^2} \quad (\text{A/m}) \quad (10.7)$$

To determine the total magnetic field H due to a conductor of finite size, need to sum up the contributions due to all the current elements making up the conductor. Hence, the Biot-Savart law becomes

$$\mathbf{H} = \frac{I}{4\pi} \int_l \frac{d\mathbf{l} \times \hat{\mathbf{R}}}{R^2} \quad (\text{A/m}) \quad (10.8)$$

l = is the line path along which I exists.



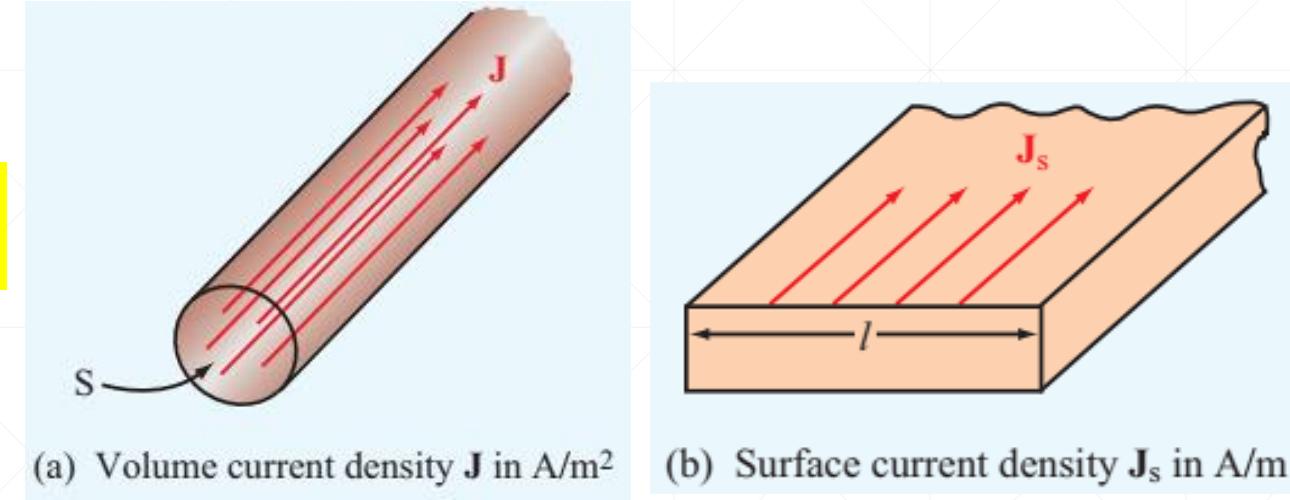
Gambar 10.2 Medan magnet $d\mathbf{H}$ yang dihasilkan dari elemen arus I , $d\mathbf{l}$. Arah medan terinduksi pada titik P berlawanan dengan titik terinduksi P'.

Magnetic Field Due to Surface and Volume Current Distributions

Hukum Biot–Savart dapat diekspresikan dalam bentuk *distributed current sources* (gbr 10.3) such as the volume current density J , measured in (A/m^2) , atau surface current density J_s , measured in (A/m) . The surface current density J_s memanfaatkan arus yang mengalir pada permukaan konduktor dalam bentuk *sheet of effectively zero thickness*.

When current sources are specified in terms of J_s over a surface S or in terms of J over a volume v , we can use the equivalence given by

$$I \, dl \leftrightarrow J_s \, ds \leftrightarrow J \, dv \quad (10.9)$$



Gambar 10.3 (a) Total arus yang melewati penampang melintang (cross section) S dari silinder adalah $I = \int_S \mathbf{J} \cdot d\mathbf{s}$. (b) Total arus yang mengalir pada permukaan konduktor adalah $I = \int_l \mathbf{J}_s \cdot dl$.

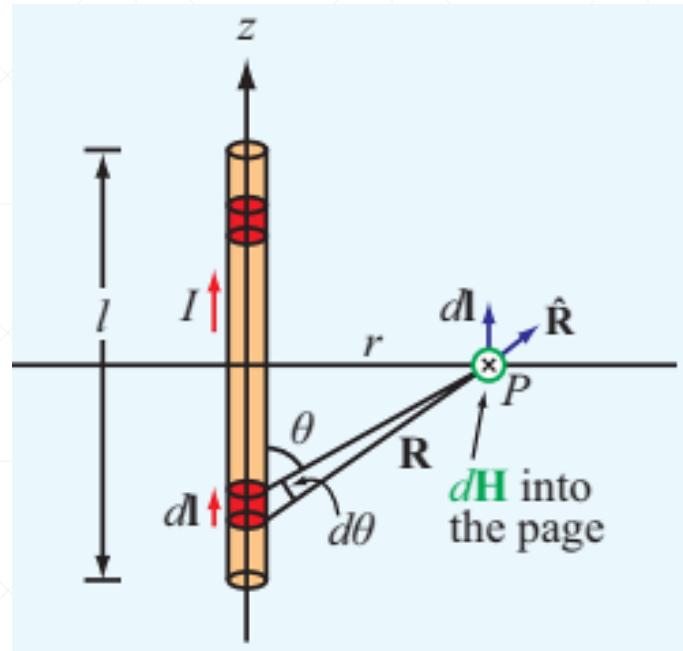
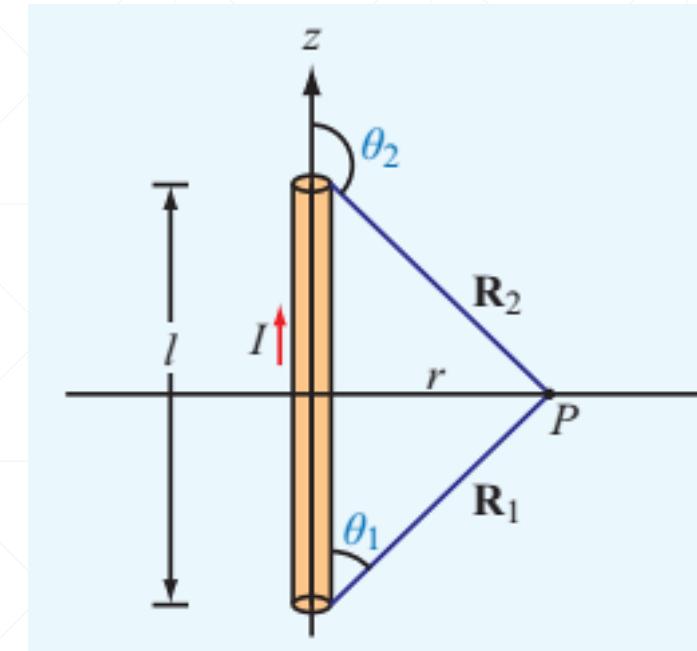
$$\mathbf{H} = \frac{1}{4\pi} \int_S \frac{\mathbf{J}_s \times \hat{\mathbf{R}}}{R^2} \, ds, \quad (\text{surface current})$$

$$\mathbf{H} = \frac{1}{4\pi} \int_v \frac{\mathbf{J} \times \hat{\mathbf{R}}}{R^2} \, dv. \quad (\text{volume current})$$

$$R = r \csc \theta, \\ z = -r \cot \theta, \\ dz = r \csc^2 \theta \, d\theta.$$

Dari gambar 10.4 (kanan)

$$\cos \theta_1 = \frac{l/2}{\sqrt{r^2 + (l/2)^2}}, \\ \cos \theta_2 = -\cos \theta_1 = \frac{-l/2}{\sqrt{r^2 + (l/2)^2}}.$$



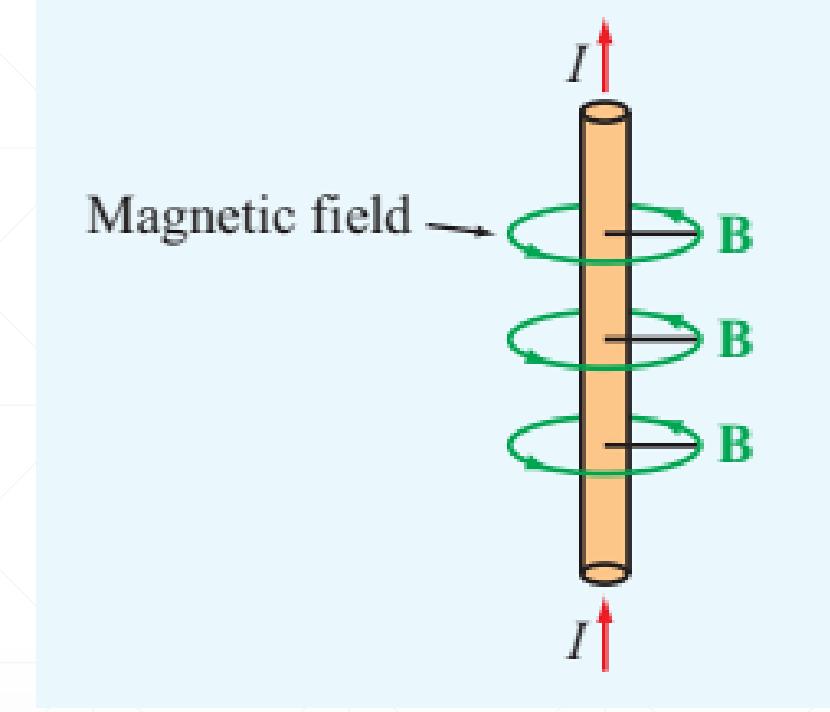
Gambar 10.4 Linear conductor of length l carrying a current I .
 (kiri) The field $d\mathbf{H}$ at point P due to incremental current element dI .
 (kanan) Limiting angles θ_1 and θ_2 , each measured between vector $I \, d\mathbf{l}$ and the vector connecting the end of the conductor associated with that angle to point P .

▲ This is a very important and useful expression to keep in mind. It states that in the neighborhood of a linear conductor carrying a current I , the induced magnetic field forms concentric circles around the wire (gbr 10.5), and its intensity is directly proportional to I and inversely proportional to the distance r . ▲

$$\mathbf{B} = \mu_0 \mathbf{H}$$

$$\mathbf{B} = \hat{\Phi} \frac{\mu_0 I l}{2\pi r \sqrt{4r^2 + l^2}} \quad (10.10)$$

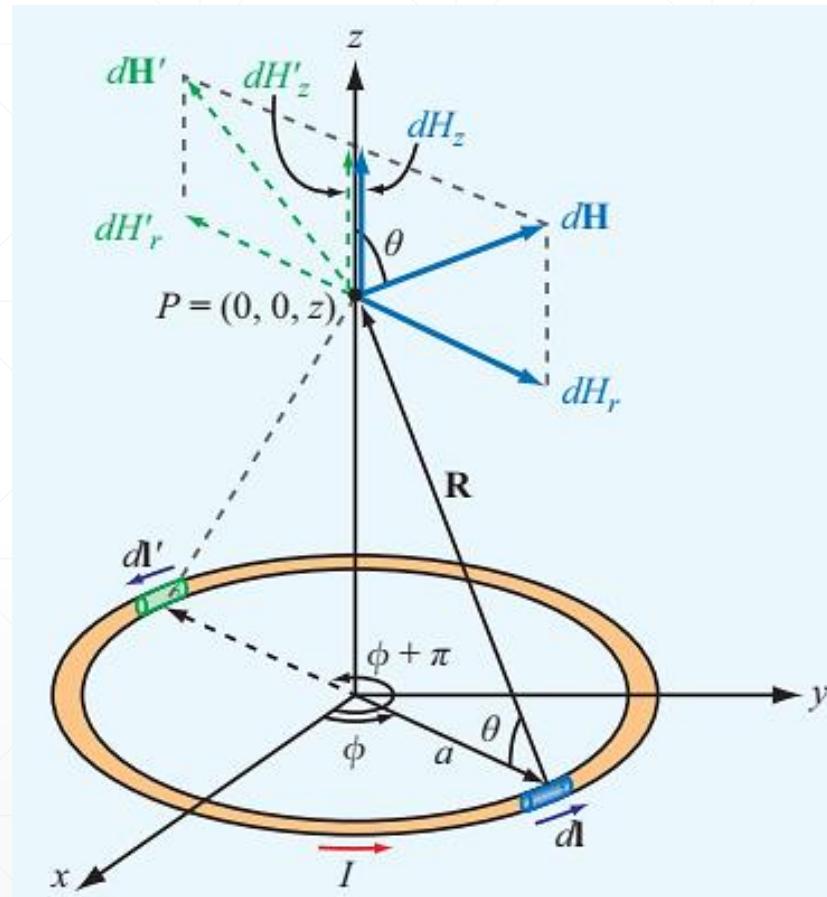
$$\mathbf{B} = \hat{\Phi} \frac{\mu_0 I}{2\pi r} \quad (10.11)$$



Gambar 10.5 Medan magnet berada di konduktor panjang yang membawa arus linear.

Formulasi 10.11 digunakan untuk infinitely long wire (kondisi $l \gg r$)

Magnetic Field of a Magnetic Dipole



Gambar 10.6 Circular loop carrying a current I

NIA = momen magnetik

$$\mathbf{H} = \hat{\mathbf{z}} \frac{Ia^2}{2\pi|z|^3} \quad \begin{array}{l} \text{untuk} \\ |z| \gg a \end{array} \quad (10.12)$$

In view of the definition given by :
 $\mathbf{m} = \hat{\mathbf{n}}NIA = \hat{\mathbf{n}}m$ (A.m²)
 for the **magnetic moment m** of a current loop, a single-turn loop situated in the x - y plane (Gbr. 10.6) has **magnetic moment $\mathbf{m} = \hat{\mathbf{z}}m$** with **$m = I\pi a^2$** . Consequently, Eq. (10.12) may be expressed as:

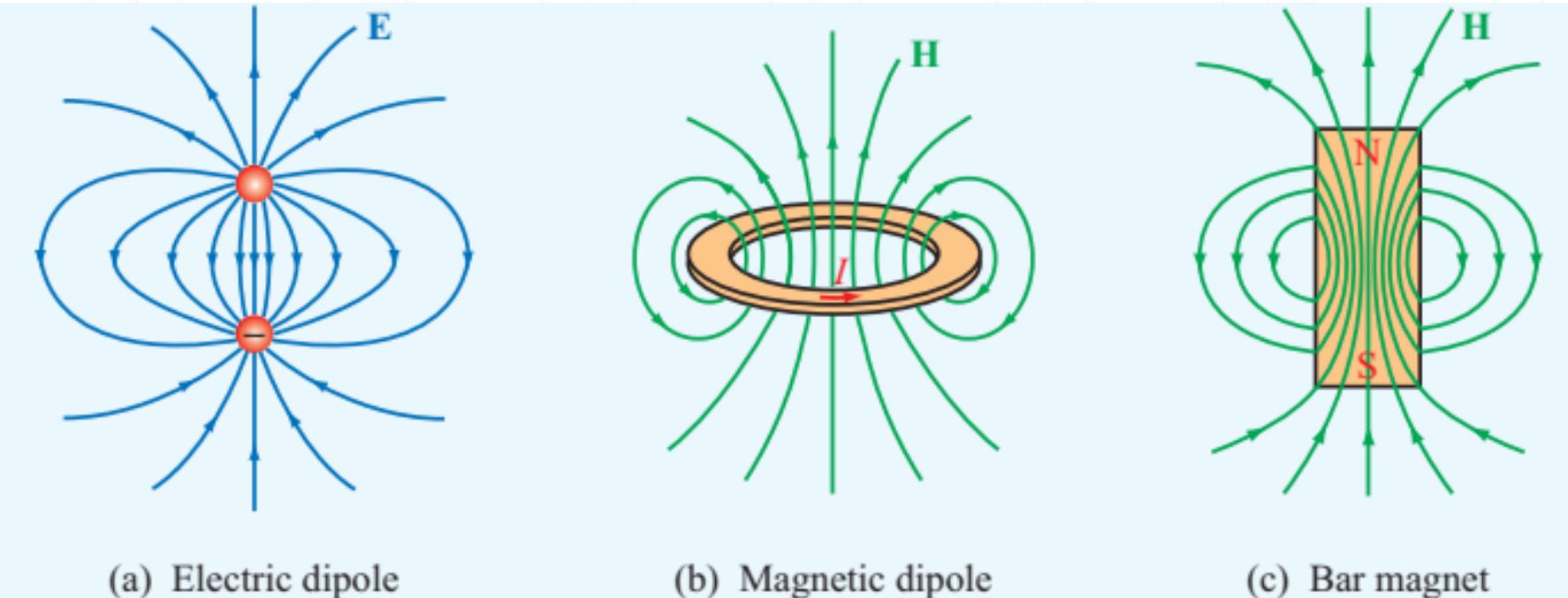
$$\mathbf{H} = \hat{\mathbf{z}} \frac{m}{2\pi|z|^3} \quad \begin{array}{l} \text{untuk} \\ |z| \gg a \end{array} \quad (10.13)$$

$$\mathbf{H} = \frac{m}{4\pi R^3} (\hat{\mathbf{R}} 2 \cos \theta + \hat{\mathbf{\theta}} \sin \theta) \quad \begin{array}{l} \text{untuk} \\ R \gg a \end{array} \quad (10.14)$$

From eq 10.13 applies to a point P far away from the loop and on its axis. Had we solved for \mathbf{H} at any distant point $P = (R, \theta, \phi)$ in a spherical coordinate system with R the distance between the center of the loop and point P , we would have obtained the expression 10.14

▲ A current loop with dimensions much smaller than the distance between the loop and the observation point is called a **magnetic dipole**.

This is because the pattern of its magnetic field lines is similar to that of a permanent magnet as well as to the pattern of the electric field line of the electric dipole (Gbr. 10.7). ▲



Gambar 10.7 Patterns of (a) the electric field of an electric dipole, (b) the magnetic field of a magnetic dipole, and (c) the magnetic field of a bar magnet. Far away from the sources, the field patterns are similar in all three cases.

