

MOTION OF PARTICLES THROUGH FLUIDS

By Dr Akmal Hadi Ma' Radzi

Mechanics of Particle Motion

- For a rigid particle moving through a fluid, there are 3 forces acting on the body
 - ✓ - The external force (gravitational or centrifugal force)
 - ✓ - The buoyant force (opposite but parallel direction to external force)
 - ✓ - The drag force (opposite direction to the particle motion)

Equation for One-dimensional Motion of Particle through Fluid

- Consider a particle of mass m moving through a fluid under the action of an external force F_e . Let the velocity of the particle relative to the fluid be u , let the buoyant force on the particle be F_b and let the drag be F_D , then

$$m \frac{du}{dt} = F_e - F_b - F_D \quad (1)$$

- **The external force (F_e)** - Expressed as a product of the **mass (m)** and the acceleration (ae) of the particle from this force

$$F_e = ma_e \quad (2)$$

The buoyant force (F_b) – Based on Archimedes' law, the product of the mass of the fluid displaced by the particle and the acceleration from the external force.

- The volume of the particle is $V_p = \frac{m}{\rho_p}$
- The mass of fluid displaced is $m = \frac{m}{\rho_p} \rho$

where ρ is the density of the fluid. The buoyant force is given by

$$F_b = \frac{m \rho a_e}{\rho_p} \quad (3)$$

The drag force (F_D)

$$F_D = \frac{C_D u^2 \rho A_p}{2} \quad (4)$$

where C_D is the drag coefficient, A_p is the projected area of the particle in the plane perpendicular to the flow direction.

- By substituting all the forces in the Eq. (1)

$$\frac{du}{dt} = a_e - \frac{\rho a_e}{\rho_p} - \frac{C_D u^2 \rho A_p}{2m} = a_e \frac{\rho_p - \rho}{\rho_p} - \frac{C_D u^2 \rho A_p}{2m} \quad (5)$$

- Case 1 : Motion from gravitational force

$$a_e = g$$

$$\frac{du}{dt} = g \frac{\rho_p - \rho}{\rho_p} - \frac{C_D u^2 \rho A_p}{2m} \quad (6)$$

- Case 2 : Motion in a centrifugal field

$$a_e = r\omega^2$$

$$\frac{du}{dt} = r\omega^2 \frac{\rho_p - \rho}{\rho_p} - \frac{C_D u^2 \rho A_p}{2m} \quad (7)$$

- r = radius of path of particles
- ω = angular velocity, rad/s
- In this equation, u is the velocity of the particle relative to the fluid and is directed outwardly along a radius.

Terminal Velocity

- In gravitational settling, g is constant (9.81m/s²)
- The drag (C_D) always increases with velocity (u).
- The acceleration (a) decreases with time and approaches zero.
- The particle quickly reaches a constant velocity which is the maximum attainable under the circumstances.
- **This maximum settling velocity is called terminal velocity.**

$$\frac{du}{dt} = g \frac{\rho_p - \rho}{\rho_p} - \frac{C_D u^2 \rho A_p}{2m} = 0 \quad (8)$$

$$u_t = \sqrt{\frac{2g(\rho_p - \rho)m}{A_p \rho_p C_D \rho}} \quad (9)$$

- For spherical particle of diameter D_p moving through the fluid, the terminal velocity is given by

$$m = \frac{1}{6} \pi D_p^3 \rho_p \quad A_p = \frac{1}{4} \pi D_p^2$$

- Substitution of m and A_p into the equation for u_t gives the equation for **gravity settling** of spheres

$$u_t = \sqrt{\frac{4g D_p (\rho_p - \rho)}{3C_D \rho}} \quad (12)$$

Frequently used

- **In motion from a centrifugal force**, the velocity depends on the radius
- The acceleration is not constant if the particle is in motion with respect to the fluid.
- In many practical use of centrifugal force, is small ($\frac{du}{dt} = \sim 0$) thus, it can be neglected to give

$$\frac{du}{dt} = r\omega^2 \frac{\rho_p - \rho}{\rho_p} - \frac{C_D u^2 \rho A_p}{2m} = 0 \quad (10)$$

$$u_t = \omega \sqrt{\frac{2r(\rho_p - \rho)m}{A_p \rho_p C_D \rho}} \quad (11)$$

Drag Coefficient

- Drag coefficient is a function of Reynolds number (N_{RE}).
The drag curve applies only under restricted conditions:
 - i). The particle must be a solid sphere;
 - ii). The particle must be far from other particles and the vessel wall so that the flow pattern around the particle is not distorted;
 - iii). It must be moving at its terminal velocity with respect to the fluid.

Reynolds Number

□ Particle Reynolds Number

$$Re = \frac{uD_p\rho}{\mu}$$

u : velocity of fluid stream
 D_p : diameter of the particle
 ρ : density of fluid
 μ : viscosity of fluid

□ For $Re < 1$ (Stokes Law applied- laminar flow)

Thus,

$$C_D = \frac{24}{Re_p}$$
$$F_D = 3\pi\mu u_t D_p \quad u_t = \frac{gD_p^2(\rho_p - \rho)}{18\mu}$$

- For $1000 < \text{Re} < 200\,000$ (Newton's Law applied – turbulent flow)

$$C_D = 0.44$$

$$F_D = 0.055\pi D_p^2 u_t^2 \rho \quad u_t = 1.75 \sqrt{\frac{g D_p (\rho_p - \rho)}{\rho}}$$

- Newton's law applies to fairly large particles falling in gases or low viscosity fluids.

Criterion for settling regime

- To identify the range in which the motion of the particle lies, the velocity term is eliminated from the Reynolds number (Re) by substituting u_t from Stokes' law and Newton's law.

- Using Stoke's Law; $u_t = \frac{g D_p^2 (\rho_p - \rho)}{18\mu}$

$$Re = \frac{D_p u_t \rho}{\mu} = \frac{g \rho D_p^3 (\rho_p - \rho)}{18 \mu^2}$$

- To determine the settling regime, a convenient criterion K is introduced.

$$K = D_p \left[\frac{g \rho (\rho_p - \rho)}{\mu^2} \right]^{1/3}$$

- Thus $Re = K^3/18$.
- Set $Re = 1$ and solving for K gives $K=2.6$.
- If $K < 2.6$ then Stokes' law applies.

- Using Newton's Law; $u_t = 1.75 \sqrt{\frac{gD_p(\rho_p - \rho)}{\rho}}$

- Substitution by criterion K,

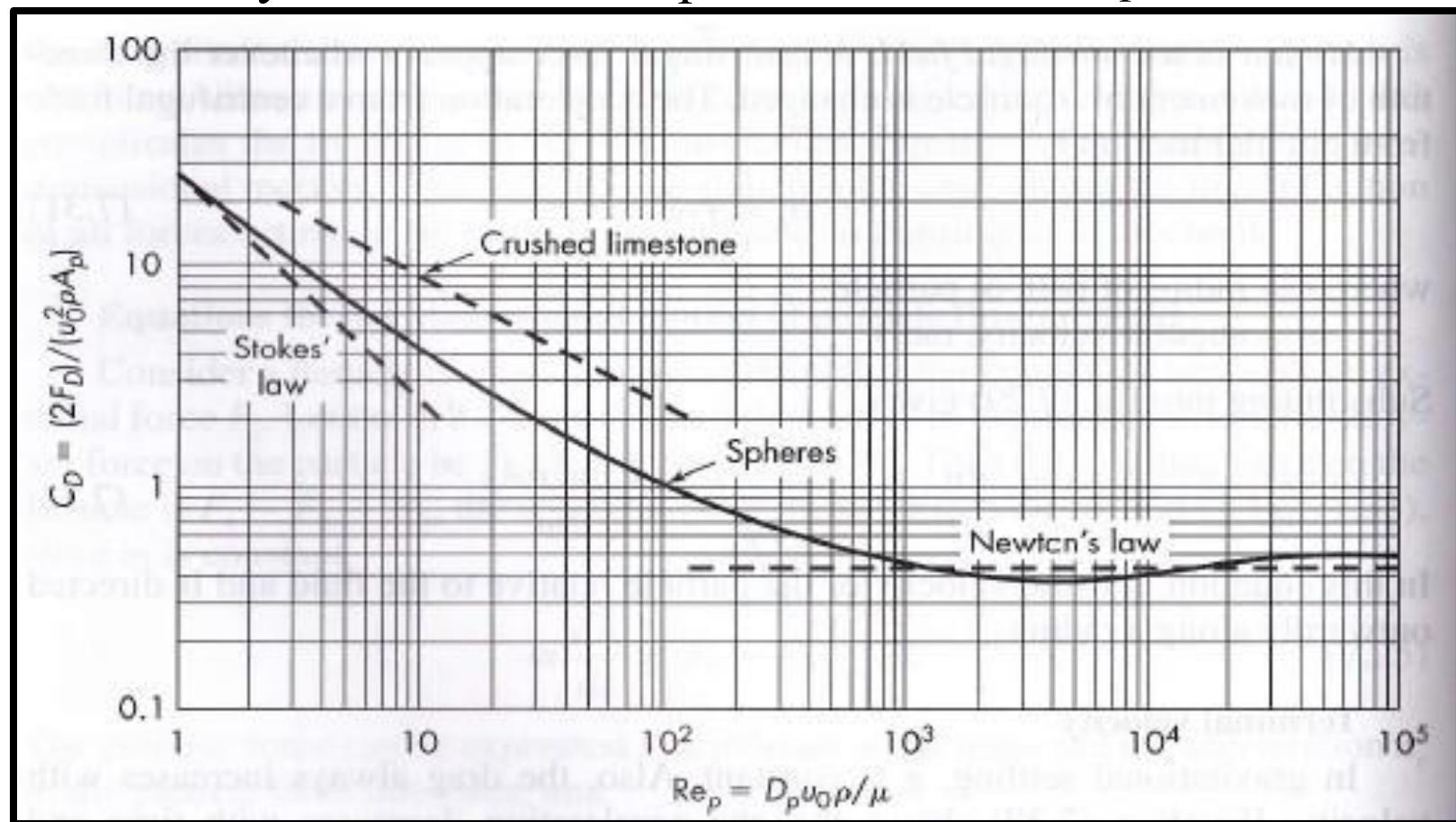
$$K = D_p \left[\frac{g \rho (\rho_p - \rho)}{\mu^2} \right]^{1/3}$$

- Thus, $Re = 1.75K^{1.5}$
- Set $Re = 1000$ and solving for K gives $K = 68.9$.
- Set $Re = 200,000$ and solving for K gives $K = 2,360$.

THUS;

- Stokes' law range: $K < 2.6$
- Newton's law range: $68.9 < K < 2,360$
- Intermediate range : when $K > 2,360$ or $2.6 < K < 68.9$, u_t is found from,
$$u_t = \sqrt{\frac{4g(\rho_p - \rho)D_p}{3C_D\rho}}$$
- using a value of C_D found by trial from the curve.

- In general case, the terminal velocity, u_t can be found by try and error after guessing Re to get an initial estimate of drag coefficient C_D .
- Normally for this case the particle diameter D_p is known



Drag coefficients (C_D) for spheres and irregular particles

Example 1

- a. Estimate the terminal velocity for 80- to 100-mesh particles of limestone ($\rho_p = 2800 \text{ kg/m}^3$) falling in water at 30° C.
- b. How much bigger would be the velocity in centrifugal separator when the acceleration is 50g?

Solution 1

(a) From Appendix:

$$D_p \text{ for 100-mesh} = 0.147 \text{ mm}$$

$$D_p \text{ for 80-mesh} = 0.175 \text{ mm}$$

$$\text{Average diameter } \bar{D}_p = 0.161 \text{ mm}$$

$$\mu = 0.801 \text{ cP} \text{ and } \rho = 62.16 \text{ lb/ft}^3 \text{ or } 995.7 \text{ kg/m}^3.$$

To find which settling law applies, calculate criterion K :

$$K = D_p \left[\frac{g \rho (\rho_p - \rho)}{\mu^2} \right]^{1/3}$$

$$K = 0.161 \times 10^{-3} \left[\frac{9.80665 \times 995.7 (2,800 - 995.7)}{(0.801 \times 10^{-3})^2} \right]^{1/3} \\ = 4.86$$

This is slightly above Stoke's law range.

Assume $Re_p = 5$; then from the Fig., $C_D \approx 14$, and,

$$u_t = \sqrt{\frac{4gD_p(\rho_p - \rho)}{3C_D\rho}} \quad (12)$$

$$u_t = \left[\frac{4 \times 9.80665(2,800 - 995.7)(0.161 \times 10^{-3})}{3 \times 14 \times 995.7} \right]^{1/2}$$

$$= 0.0165 \text{ m/s}$$

Check:

$$Re = \frac{uD_p\rho}{\mu}$$

$$Re_p = \frac{0.161 \times 10^{-3} \times 0.0165 \times 995.7}{0.801 \times 10^{-3}} = 3.30$$

Since C_D at $Re_p = 3.30$ is greater than 14, the revised u_t and Re_p will be less than the above values, so guess a lower value of Re_p .

Guess

$$\text{Re}_p = 2.5 \quad C_D \cong 20$$

$$u_t = 0.0165 \left(\frac{14}{20}\right)^{0.5} = 0.0138 \text{ m/s}$$

$$\text{Re}_p = 3.30 \left(\frac{0.0138}{0.0165}\right) = 2.76$$

This is close enough to the value of 2.5, and

$$u_t \cong 0.014 \text{ m/s}$$

b. Using $a_e = 50g$ in place of g , since only the acceleration changes, $K = 4.86 \times 50^{1/3} = 17.90$. This is still in the intermediate settling range. Estimate $\text{Re}_p = 40$, from the Fig., $C_d = 4.1$ and

$$u_t = \left[\frac{4 \times 9.80665 \times 50(2,800 - 995.7)(0.161 \times 10^{-3})}{3 \times 4.1 \times 995.7} \right]^{1/2}$$
$$= 0.216 \text{ m/s}$$

Check:

$$\text{Re}_p = \frac{0.161 \times 10^{-3} \times 0.216 \times 995.7}{0.801 \times 10^{-3}}$$

$$= 43, \text{ close to 40}$$

$$u_t \cong 0.22 \text{ m/s}$$

The calculated terminal velocities are about 30 percent less than for a sphere of the same size

Example 2

Oil droplets having diameter of $20 \mu\text{m}$ are to be settled from air with a density of 1.137kg/m^3 and viscosity of 1.9×10^{-5} Pa.s at. Meanwhile, the density of the oil is 900 kg/m^3 . Calculate the terminal velocity of the droplets if the droplets is assumed to be a rigid sphere.

Solution: The solution is trial and error since the velocity is unknown. Hence, CD cannot be directly determined. The Reynolds number is as follows:

$$N_{Re} = \frac{D_p v_t \rho}{\mu} = \frac{(2.0 \times 10^{-5})(v_t)(1.137)}{1.90 \times 10^{-5}} = 1.197 v_t$$

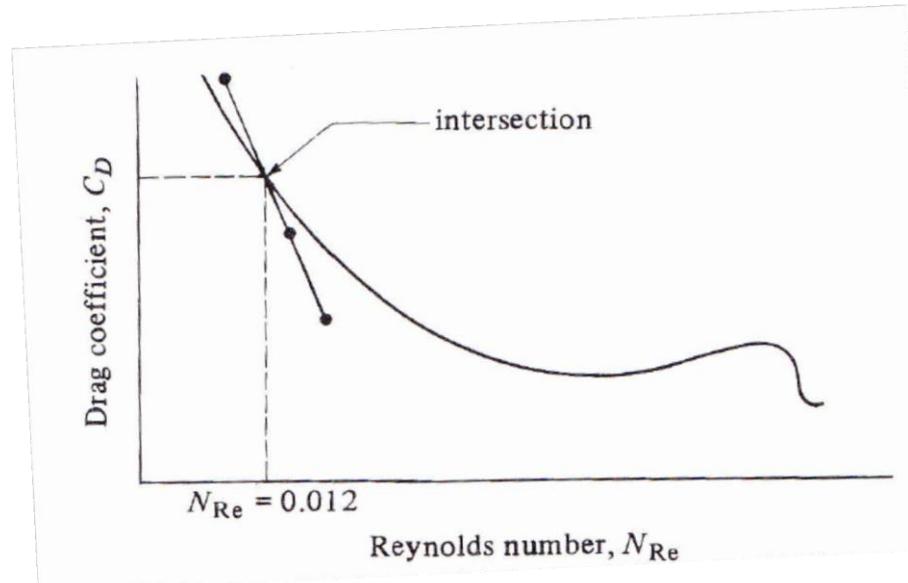
For the first trial, assume that $v_t = 0.305$ m/s. Then $N_{Re} = 1.197(0.305) = 0.365$. Solving for C_D :

$$v_t = \sqrt{\frac{4(\rho_p - \rho)gD_p}{3C_D \rho}} = \sqrt{\frac{4(900 - 1.137)(9.8066)(2.0 \times 10^{-5})}{(3)C_D(1.137)}}$$

$$C_D = \frac{0.2067}{v_t^2}$$

Using $v_t = 0.305$ m/s, $C_D = 0.2067/(0.305)^2 = 2.22$.

Assuming that $v_t = 0.0305$ m/s, $N_{Re} = 0.0365$ and $C_D = 222$. For the third trial, assuming that $v_t = 0.00305$ m/s, $N_{Re} = 0.00365$ and $C_D = 22200$. These three values calculated for N_{Re} and C_D are plotted on a graph.



It can be shown that the line through these points is a straight line. The intersection of this line and the drag-coefficient correlation line is the solution to the problem at $N_{Re} = 0.012$. The velocity can be calculated from the Reynolds number:

$$N_{Re} = 0.012 = 1.197v_t$$

$$v_t = 0.0100 \text{ m/s (0.0328 ft/s)}$$

The particle is in the Reynolds number range less than 1, which is the laminar Stokes' law region. Alternatively, the velocity can be calculated as follows:

$$v_t = \frac{9.8066(2.0 \times 10^{-5})^2(900 - 1.137)}{18(1.90 \times 10^{-5})} = 0.0103 \text{ m/s}$$