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Pendahuluan

« Kaidah Fase Gibbs: jika sejumlah sifat intensif telah ditetapkan, maka

sifat-sifat intensif yang lain akan tertentu pula.

 Nilai numerik suatu sifat termodinamika penting untuk menghitung a.l. : kerja

dan panas dalam suatu proses, kesetimbangan fase/ reaksi kimia.

* Perlu adanya persamaan hubungan antar sifat intensif, juga
hubungan sifat intensif dengan persamaan keadaan (EOS) atau

besaran-besaran yang mudah terukur (P V atau T)




Besaran terukur

RV.,T)

persamaan (?)

Persamaan
Keadaan (EOS)

persamaan (?)

v

Sifat intensif

A 4

Hitung W, Q, f, ¢ dlII.




Hubungan antar Sifat untuk
Fase-fase Homogen

Hukum | untuk sistem tertutup: d(nU) =dQ +dW

l khusus proses reversibel

d(nU) = dQy, +dW,,

dW,,, =—Pd(nV) j dQ,, =Td(ns) [Hukumll

d(nU) =Td(nS) — Pd(nV)

= Persamaan tersebut hanya mengandung sifat-sifat sistem.
= Dapat diterapkan pada sistem tertutup dengan massa konstan, baik

pada proses reversible atau irreversible.
= Perubahan sifat (properties change) di antara keadaan-keadaan yang

setimbang.
= Sistem bisa berupa fase homogen atau heterogen, inert atau terlibat

reaksi kimia.




Persamaan *) mengandung sifat-sifat d(nU)=Td(nS)-Pd(nV) )
termodinamika yg utama, yaitu: PV T U and s
Entalpi: H=U + PV
Energi (bebas) Helmholtz: A=U—-TS
Energi (bebas) Gibbs: G=H-TS

Untuk satu mol fluida homogen dengan komposisi konstan:

| EE
or)y _(oV
dH =TdS +VdP PD oP S oS P Maxwell's
> eksak P\ (oS >equations
dA =-PdV - SdT ot ), v ).
ovV) _ ([0S
) _(®)




Perubahan Entalpi f (PT)

dH = CdT+|\ T(iTJ

P

N—_




Perubahan Entropi f (PT)

(s os
dS—(aT)PdT +(5P)po




Perubahan Energi Dalam f (PT)

H=U +PV

Pers.
6.19




Perubahan Entalpi & Entropi Gas Ideal

PV =RT
oV R
BE

!

oT

P

dH = C.dT +|(V—T(Lai\} \ap
\

i

dH's =C,dT

T \oT
gso —co & _p%
T P




Bentuk Alternatif untuk Cairan

volume expansivity

b= (ar

Isothermal compressibility
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Bentuk Alternatif untuk Cairan (lanjutan)

oV
), P

b

dT_(ov
dH =C,dT +I( L‘W\J \ap ds = C _—L_) dP
C T ) T :

l l

dH =C,dT +(L_pT )VdP ds =C ‘fr—T—BVdP




Determine the enthalpy and entropy changes of liquid water for a change of
state from 1 bar and 25°C to 1000 bar and 50" C. The data for water are given.

H,and S; at 1 bar, 25°C

ICPdT

[o,ir (1-BT )V dP H, and S, at 1000 bar, 50°C

P
] BV dP
1 bar,50°C
R
or ),
dH =C,dT +|(v—T(%\pJ \ap L »/dH =C,dT +(1-BT)vdP
\ ) volume expansivity

AH = <Cp >(T2 —Tl) + (l—< B>'|'2 ,{V >(P2 — Pl)

(1— (513x10°)(323.15) )(18.204)(1000 —1)

AH =75.310(323.15 - 298.15) + 10

dT (oV
ds =Cp — (aT )P

=3400J / mol

AS = (Co)In 22 ~(B )}V (P, ~ P

1

A 4

_6 _
AS — 75 310 32315 _ (51310 )(18.204)(1000 1)
298.15 10

=5.13J / mol




Energi Dalam & Entropi f (V,T)

_(au oy
dU —(a_l_ )VdT+(aV)TdV

& -o&) (& (F)
dU =C,dT +"|(T( SY _ply
\ v ), )

3142

o ((oPy o)
dU—CVdT+|\TLaTJV P)HV




Bentuk alternatif




Gibbs energy G = G (PT)

Thermodynamic property of great potential
utility

G )_(4(G/RT) (0(G/RT))
d(RT)(! ) o),

G/RT =g

(P.T)

The Gibbs energy serves as a generating function for
the other thermodynamic properties.

i




Residual properties

 The definition for the generic residual property:

MR=M—-M1
e M and Mi are the actual and ideal-gas properties,

* respectively.
* M is the molar value of any extensive thermodynamic properties
e.g.,V,UH,S, orG.

* The residual Gibbs energy serves as a generating function for the other residua

properties:
R V R H R
A S AL
\RT) RT RT




G )V g H" gl lconstT| | (G") V*
(RT ) RT RT 2 \RT ) RT
R : R
RT % RT
VR _y _yi ZRT _RT
LZ_T(a(G/RT)\J | - -
HR Z\\dp| [RT ot R dP
—:—TIP 0z ) \dP| =l \CA F’(Z 1)
RT o\ OT P RT P const T
N
/\
S® _HRF _GF :___ I( ] dP_J- 1)£
R RT RT \ OT P
const T

Z = PV/RT: experimental measurement .Given PVT data or an appropriate equation
of state, we can evaluate HR and SR and hence all other residual properties.
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Calculate the enthalpy and entropy of saturated isobutane vapor at 360 K from the
following information: (1) compressibility-factor for isobutane vapor; (2) the vapor
pressure of isobutane at 360 K is 15.41 bar; (3) at 300K and 1 bar,

(4) the ideal-gas heat capacity of isobutane vapor:

H¥ =18115 J /mol S'%¢ =295.976 J /mol - K
Cl8 /R=17765+33.037x10°T

HR j(az) st j(az) dFP_IOP(z—l)d_;

Graphical integration requires plots of (gi) /Pand (Z-1)/P vs. P

A 4

noaf (GZ) O (360)(26.37x10*) = —0.9493

HR =-2841.3J / mol

A 4

S* =-5.734J /mol - K

dP
> o] (az) %P - [ @ 1)~ =-0.9493(-0.02596) = 0.6897

H = {Hog + Rx ICPH (300,360;1.7765,33.037E — 3,0.0,0.0) }+H ® = 21598.5 miol
‘ - 1541 . 3
S = {57 + Rx ICPS (300,360;1.7765,33.037E —3,0.0,0.0) }-RIn "=+ H* = 286.676

mol - K




Residual properties by
_equations of state

« IfZ=1(PT):

Rk
S ar (62) dI;_J-OP(Z _1)d_:

 The calculation of residual properties for gases and vapors
through use of the virial equations and cubic equation of state.




Use of the virial
equation of state

ST_H'_G |S* _ pdB
R _RT_RT RT  RdT




P = ZpRT

—:ZBp+§Cp2—InZ

Three-term virial equation Z -1=Bp +Cp?

R dP GF
G—=jp(z 1) =
RT Y P RT
H® _ - p(az) dP H* _|(B_dB
RT o laT ), P RT  |[\T dT
SR HR GR
R RT RT

Application up to moderate pressure




USE OF THE CUBIC
EQUATION OF STATE

» The generic cubic equation of state:




Find values for the residual enthalpy HR and the residual entropy SR for n-
butane gas at 500 K and 50 bar as given by Redlich/Kwong equation.

T = 500 ~1.176! 1P = o0 ~1.317 [32!2&20.09703 q:\POL—(Tr)Zg_gﬁgg
" 425.1 ' 37.96 I ‘
Z=1+B -qp Z-P {Z =0.685
(Z +eB)(Z +oP)| o =1
1= it const T 1 =—L—in( 2298 | _ 0 13047
O (1+¢epb)(1+opb) c-¢ \Z+gP

H R
Az qq)dinadT) AH® = 4505

RT diInT, mol

SR dino(T)) J

— —In(Zz-P )+ *~ gl »SR =—-6.546

R ( B) [ diInT, | mol - K




Two-phase systems

* Whenever a phase transition at constant temperature
and pressure occurs,

« The molar or specific volume, internal energy, enthalpy, and entropy
changes abruptly. The exception is the molar or specific Gibbs energy,
which for a pure species does not change during a phase transition.

 For two phases aand B of a pure species coexisting at
equilibrium:

G* =GP

where G*and GP are the molar or specific Gibbs energies of the
individual phases




dG* =dGP
dG =VdP — SdT

\4

G* =GP

ap

dP 5" 5" _ AS

A 4

Vedpst —SedT =V FPdP™ —SPdT

dT Ve —VvB AV

A 4

dH =TdS +VdP AH® — TAS*B .

The latent heat of phase transition

A 4

dP=t _ AH“

The Clapeyron equation| dT  TAV

RT
Psat

Ideal gas, and V! << V¢

AV —\yv =

A 4

AH" =R

dinpP™
d(1/T)
The Clausius/Clapeyron equation




dPst  AH P

dT  TAV®
The Clapeyron equation: a vital connection between the properties of different phases.
— P=1(T)
H RdInPSat _ _ .
== The Clausius/Clapeyron equation; In Pvs 1/T - linier
d(1/T)
Inpsat — A_ B For the entire temperature range from the triple point
T to the critical point
In Psat = A— = BC The Antoine equation, for a specific temperature range
_|_
o AT +Bt®+Ct°+Dt®| The Wagner equation, over a wide
InP~ =
' 1—1 temperature range.

T=1-T,




High-temperature vapor pressures for light hydrocarbons
Temperature, °C
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Two-phase liquid/
vapor systems

* When a system consists of saturated-liquid and
saturated-vapor phases coexisting in equilibrium,
the total value of any extensive property of the
two-phase system is the sum of the total
properties of the phases:

 MrepresentsV,U,H,S,etc. [M=(1-x")M'+x'M"
* e.g,

V =(1-x")V'+x'V"




Thermodynamic diagrams
and tables

* A thermodynamic diagram represents the temperature, pressure,

volume, enthalpy, and entropy of a substance on a single plot.
Common diagrams are:

« TS diagram
* PH diagram (In P vs. H)
« HS diagram (Mollier diagram)

* In many instances, thermodynamic properties are
reported in tables. The steam tables are the most

thorough compilation of properties for a single
material.




Triple point line
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Pressure, kPa (abs)
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ks, 28-58
Thermodynamic Properties of Water

800" C T

Source. Fig, 21 of the ASME Steam Tables H
Fourth Editon, Reproduced by permission =
of the publisher, The American Sociely of ‘
Mechanical Engineers, 345 E, 47th St,, Ehks
New York, N.Y, iz,
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Superheated steam originally at P, and T, expands through a nozzle to an
exhaust pressure P,. Assuming the process Is reversible and adiabatic, determine
the downstream state of the steam and AH for the following conditions:

(a) P, = 1000 kPa, T, =250°C, and P, = 200 kPa.

(b) P, = 150 psia, T, =500°F, and P, = 50 psia.

Since the process is both reversible and adiabatic, the entropy change
of the steam is zero.
(a) From the steam stable and the use of interpolation,
At P, =1000 kPa, T, =250 C:

H, =2942.9 kJ/kg, S; = 6.9252 kJ/kg.K
At P, = 200 kPa,
S2 = 81: 6.9252 kJ/kg-K < Ssaturated vapor

the final state is in the two-phase liquid-vapor region:
S, =(1-x!)S! +x'S’|_.[6.9252 =1.5301(1~x") +7.1268X"

X! = 0.9640

kJ

AH =H, —H,=-3159 -

A

H, = (1-0.964)(504.7) + (0.964)(2706.3) = 2627.0




(a) From the steam stable and the use of
interpolation,

At P, = 150 psia, 500 F
H, = 12743 étu/lbm $, = 1.6602 Btu/Ibm.R

At P, =50 psia,
S, = 5;=1.6602 Btu/lom.K > Sqyt,rated vapor
the final state is in the superheat region:

T, =283.28°F H, =1175.3 Btu/lbm

AH :HZ—Hl——990%




A 1.5 m3 tank contains 500 kg of liquid water in equilibrium with pure water
vapor, which fills the remainder of the tank. The temperature and pressure are
100°C, and 101.33 kPa. From a water line at a constant temperature of 70°C
and a constant pressure somewhat above 101.33 kPa, 750 kg of liquid is bled
Into the tank. If the temperature and pressure in the tank are not to change as a
result of the process, how much energy as heat must be transferred to the tank?

: . ' ,d
d(mU)CV:Q+an’ d(mU)cv =Q+H Mg,
dt dt dt

|

Q = A(mu)cv —H ’Amcv

Energy balance:

l H=U 1PV
Q — A(mH)cv — A‘(/Bm/v)cv —H ’Amcv

Q — (mZHZ)cv — (mlHl)cv —H ,Amcv

At the end of the process, the tank still contains saturated liquid and
saturated vapor in equilibrium at 100" C and 101.33 kPa.



=(m,H,)., —(mH,), —HAm,
Q=(m,H;) (m;H,) H’:293.0% saturatedliquid @ 70°C
9)

H! = 419.1E—J saturatedliquid @100°C
g

Hg = 2676.0ti saturated vapor@100°C
g

From the steam table, the specific volumes of saturated liquid and saturated
vapor at 100" C are 0.001044 and 1.673 m3/kg , respectively.

(mH,), =m/H +m/H =500(419.1) + 15— (5010)6(%001044) (2676.0) = 211616kJ

15— 60?;35001044) +750 = m} + m; [1.5=1.673m" +0.001044m"

m, =500 +

(MH) =mHA +m'H’ = 524458k

2 2

Q=(m,H,), —(mH,)., —H'Am,, =524458 — 211616 — (750)(293.0) = 93092kJ




Generalized Property Correlations
for Gases (Korelasi Umum untuk
Sifat- sifat Gas)

HR _ - p(aZ) dp P= PcPr T :TCTr : H R __TZJ‘Pr(f}Z) dPr

RT ~ hlaT), P RT, "% (T, ) P,

i dP SR o 0Z ) dP. (P, dpP
S (@) ® o ® () @
R 0\ dT Jp P 20 P R °\at, ), P 0 P,




R R
Y _ popp(@2) R ST o r( a2 ] T rens
RT, °\aT, ), P R °\aT, Jp P P,
Z=2°+oZ! \
HY |, efaz°) dP 1 1, (o7t dP
RIS _(”}_Trfr( f
RT. || "ol ), P | 0\8T P Pl
X Mazﬂ dP T dp |
ek s rea T o oreot
|L K )P r 0\5T )P f |J
) ) l
R | HR)° RV
H =|( NG — HRB(TR, PR, OMEGA)
RT, || RT,  RT, |
oy | Table E5 ~ E12
5 =|( )HDQ — SRB(TR, PR,OMEGA)
RO R |




-5
| 0.7
—
Liguidos eomprimidos '\
—
-3
HR)0 Regién de 1.0 1.2
dos fases C
RT, (ases V_
2 pd
-1 = /
“ I
0.05 0.1 0.2 0.5 1.0 2.0 5.0 10.0




(real)
——
-— - - 2
____,-"'"
TL P]. - — - ﬁ'S
(real) =" AH
1 H
-H{?
Sy
- Siﬁ‘
| | . 20
1# AHY AST
T, P | T, P

(ideal) | (ideal)



H,=H5+ TTZCLng +HY

—— |AH = [ CHdT +H} —Hf

H =H/+ TT1CL9dT +H]?

A

i o R_ R
AH =(cg) (T,-T)+H7-H

. , - dT
S, =S + Tc;,g——mn5+sg*
TO T PO T2 . dT P
—|AS=|"Cl _— _RIn—-2+S? SR
Ty T P
S, =S+ ["Cis T Rin B s 1
1= Y0 T, P? Fo 1 l

AS =(C¥). In%+8§—8f

1




Use of diagram for residual property
calculation (Lee-Kesler Method)

mﬁed Correlation for Compressibility factor
* Generalized Correlation for Residual Enthalpy

e Generalized Correlation for Residual Entropy

J—



Z_gen_corl.pdf
H_gen_corl.pdf
S_gen_corl.pdf

Estimate V, U, H, and S for 1-butene vapor at 200 C and 70 bar if H and S are
set equal to zero for saturated liquid at 0 C. Assume that only data available

dare.

T,=420K P_=40.43bar ®=0.191 T, =266.9K (nomalboiling pt.)

Ci¢ /R =1.967+31.630x10°T —9.837x10°T 2

T, =1.127] [P, =1.731

Z=2°+0Z

=0.512

— 0.485 +(0.191)(0.142)

ZRT
P

=287.8

cm?

mol

Assuming four steps:

(a) Vaporization at T, and P, = Psat

(b) Transition to the ideal-gas state at (T3 P 9
(c) Change to (T,, P,) in the ideal-gas state

(d) Transition to the actual final state at (T, P,)



Estado de referencia;
Buteno liquido

saturado a -

~
273.15 K, 1.2771 bar | ""--.,‘ AH
.
-~
S
AHY SNA8
(@) H“-- Estado final del
AS™ T
buteno a
473.15 K. 70 bar
Vapor saturado
de buteno @ } i
273.15 K, 1.2771 bar Hy
(d)
~HY 87
(b)
_ ol
1
Buteno en el estado AHT AS Buteno en el estado
de gas ideal a de gas ideal §
273.15 K, 1.2771 bar () 473.15 K. 70 bar




Step (a) IN1.0133 = Am —>
Inpsat — A_ B 266.9 For =273.15K,
T B psat = 1.2771 bar

In40.43=A- —
420

AH" 1.092(In P, -1.013)
RT, 0.930-T,

=9.979

The latent heat at normal boiling point:

AH v 1—T 0.38
The latent heat at 273.15 K: — r
AHY | 1-T

7] |AH® =TAS g

AH"Y =21810 —
mol - K mol

AS" =79.84

A

Step (b) |T, =0.650]|P, =0.0316

R R )0 R
H = (H ) +® (H )l = HRB(TR, PR,OMEGA) = -0.0985 | |- HlR =344 —
RT, || RT, RT, | mol

c

ST KSR)O+@@1 = SRB(TR, PR,OMEGA) = -0.1063 |- S; = 0.88

R || R R | mol - K




Step (c)

AH™ =8.314 x ICPH (273.15,473.15;1.967,31.630E - 3,-9.837E - 6,0.0) = 20564 il
mo
AS'9 =8.314 x ICPS(273.15,473.15;1.967,31.630E — 3,-9.837E —6,0.0) —8.314In . 27;)71
=22.18 J
mol - K

Step (d) |T,=1.127]|P,=1.731

I (CO D R s
RT, || RT, RT, | mol

SRJ(SR))m@L_lJos SF = _14.18—
R || R R | mol - K

C

Total

H = AH = 21810 — (—344) + 20564 — 8485 = 34233 il
Mo

J
mol - K
J

U = H - PV=34233 - (70)(287.8)/10 = 32218
MO

S=AS =79.84—-(-0.88)+22.18-14.18 =88.72
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