
1

Wike Handini

2

Definisi
• Graf berlabel (weighted graph) adalah suatu graf tanpa garis 

paralel dimana setiap garisnya berhubungan dengan suatu

bilangan riil tak negatif yang menyatakan bobot garis 

tersebut. 

• Bobot garis e biasanya diberi simbol w(e). Jumlah bobot

semua garis disebut Total Bobot.

• Matriks yang bersesuaian dengan graf label G adalah matriks

hubung A = (aij) dengan aij = bobot garis yang 

menghubungkan titik vi dengan titik vj. Jika titik vi tidak

berhubungan langsung dengan titik vj, maka aij = , dan aij = 

0 jika i = j.
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Dalam suatu

propinsi, ada 8 kota

(v1, ..., v8) yang 

akan dihubungkan

dengan jaringan

listrik. Biaya

pemasangan

jaringan listrik yang 

mungkin dibuat

antara 2 kota adalah

sebagai berikut:

Biaya per 

satuan

Kota yang 

dihubungkan
Garis

3v2  v3e4

4v4  v6e7

5v1  v7e2

5v3  v4e8

5v3  v5e9

15v1  v2e1

15v1  v4e3

15v6  v8e10

15v7  v8e5

15v5  v6e11

18v6  v7e6

a. Nyatakan

masalah tersebut

dalam graf

berlabel.

b. Buatlah matriks

hubung yang 

sesuai untuk

menyatakan

masalah 

tersebut.

4

a. Graf berlabel dapat digambarkan sebagai berikut:

e9 (5)

v1 v2

v3
v4

v5

v6

v7

v8

e2 (5) e3 (15) e4 (3)

e5 (15)
e6 (18)

e7 (4)

e8 (5)

e1 (15)

e10 (15) e11 (15)

Biaya per 

satuan

Kota yang 

dihubungkan
Garis

3v2  v3e4

4v4  v6e7

5v1  v7e2

5v3  v4e8

5v3  v5e9

15v1  v2e1

15v1  v4e3

15v6  v8e10

15v7  v8e5

15v5  v6e11

18v6  v7e6
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b. Matriks hubung yang menyatakan graf berlabel adalah sebagai berikut:

0 15      15        5 

15 0       3     

 3 0 5 5   

15  5 0       4  

  5  0 15       

   4 15 0 18     15

5     18      0 15 

     15     15 0

v1

v2

v3 

v4 

v5

v6

v7 

v8

v1 v2 v3 v4 v5 v6 v7 v8

A = e9 (5)

v1

v2

v3

v4

v5v6

v7

v8

e2 (5) e3 (15) e4 (3)

e5 (15)
e6 (18)

e7 (4)

e8 (5)

e1 (15)

e10 (15) e11 (15)

6

• Dalam program komputer, sel dengan nilai  diisi dengan bilangan yang 

harganya jauh lebih besar dari elemen-elemen yang bukan .

• Aplikasi yang sering digunakan dalam graf berlabel adalah mencari pohon

rentang dengan total bobot seminimum mungkin (sering disebut pohon rentang

minimum).

• Pada tahun 1956, Kruskal dan Prim yang bekerja secara terpisah, masing-masing 

berhasil menyusun algoritma yang membuat pohon rentang minimum secara

efisien.
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• Pertama, semua garis dalam graf G diurutkan berdasarkan bobotnya dari kecil ke 

besar. Kemudian pilih garis dengan bobot terkecil, langkah berikutnya pilih garis 

dengan bobot terkecil (diantara garis-garis sisa yang belum dipilih). Pada setiap 

langkah, dipilih garis dengan bobot terkecil, tetapi tidak membentuk loop 

dengan garis-garis yang sudah dipilih sebelumnya.

• Misalkan G adalah graf mula-mula dengan n titik, T adalah pohon rentang

minimum.

• E adalah himpunan semua garis G.

• Secara formal, algoritma yang ditemukan Kruskal dapat dinyatakan sebagai

berikut:

8

1. Isi T dengan semua titik  titik G tanpa garis

2. m = 0

3. Selama m < (n1) lakukan:

a. Tentukan garis e  E dengan bobot minimum. Jika ada beberapa

e dengan sifat tersebut, pilih salah satu secara sembarang

b. Hapus e dari E

c. Jika e ditambahkan ke T tidak menghasilkan sirkuit, maka:

i. tambahkan e ke T

ii. m = m + 1
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Carilah pohon rentang minimum dari contoh 30 dengan menggunakan algoritma Kruskal. 

Hitunglah bobot minimum totalnya.

Penyelesaian

e9 (5)

v1

v2

v3
v4

v5v6

v7

v8

e2 (5) e3 (15) e4 (3)

e5 (15)

e6 (18)

e7 (4)

e8 (5)

e1 (15)

e10 (15) e11 (15)

Dari contoh 30 didapatkan graf:

• Ambil garis dengan bobot minimum, maka 

pohon rentang T yang semula tanpa garis 

akan menjadi:

v1

v2

v3
v4

v5v6

v7

v8

e4 (3)

10

e9 (5)

e2 (5)

e7 (4)

e8 (5)

• Iterasi berikutnya, ditambahkan garis satu persatu pada T selama penambahan garis 

tersebut tidak membentuk loop dengan garis sebelumnya. 

Dengan demikian ditambahkan garis e7. 

Selanjutnya ada 3 garis dengan bobot terkecil (5) yaitu e2, e8 dan e9. Oleh karena

penambahan ketiga garis tersebut tidak menghasilkan loop, maka ketiganya dapat

ditambahkan dalam graf T. v1

v2

v3
v4

v5v6

v7

v8

e4 (3)

e9 (5)

v1
v2

v3
v4

v5v6

v7

v8

e2 (5) e3 (15) e4 (3)

e5 (15)
e6 (18)

e7 (4)

e8 (5)

e1 (15)

e10 (15) e11 (15)
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• Berikutnya ada 5 garis dengan bobot yang sama yaitu 15, Pilih satu secara sembarang, 

misalnya dipilih e1, maka graf T menjadi:

e1 (15)

e9 (5)

e2 (5)

e7 (4)

e8 (5)

v1

v2

v3
v4

v5v6

v7

v8

e4 (3)

e9 (5)

v1

v2

v3
v4

v5v6

v7

v8

e2 (5) e3 (15) e4 (3)

e5 (15)

e6 (18)

e7 (4)

e8 (5)

e1 (15)

e10 (15) e11 (15)

12

• Dari 4 garis dengan bobot 15 yang tersisa (e3, e5, e10), dipilih garis yang tidak

membentuk loop dengan garis sebelumnya, yaitu e10, sehingga garf T menjadi:

e10 (15)

• Bobot total = 3 + 4 + 5+ 5 +5 +15 + 15 = 52

e1 (15)

e9 (5)

e2 (5)

e7 (4)

e8 (5)

v1

v2

v3
v4

v5v6

v7

v8

e4 (3)

e9 (5)

v1

v2

v3
v4

v5v6

v7

v8

e2 (5) e3 (15) e4 (3)

e5 (15)

e6 (18)
e7 (4)

e8 (5)

e1 (15)

e10 (15) e11 (15)
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• Jika algoritma Kruskal dimulai dengan graf tanpa garis, maka algoritma Prim dimulai dari

graf yang kosong sama sekali.

• Pertama pilih satu titik sembarang (misalnya v1). Kemudian tambahkan 1 garis berbobot

paling minimum yang berhubungan dengan v1 (misalnya e1) dan titik ujung lainnya ke T. 

Langkah selanjutnya, dipilih garis dalam E(G) yang bukan anggota E(T) dengan sifat:

a. Garis tersebut berhubungan dengan salah satu titik  V(T).

b. Garis tersebut memiliki bobot terkecil.

• Langkah tersebut diulang-ulang sehingga diperoleh (n  1) garis dalam E(T) dimana n 

adalah jumlah titik dalam G.

• Misalkan G adalah graf berlabel dengan n titik dan T adalah pohon rentang minimum. 

Secara formal, algoritma Prim adalah sebagai berikut:

14

0. Inisialisasi: mula-mula T adalah graf kosong

1. Ambil sembarang v  V(G). Masukkan v ke dalam V(T)

2. V(G) = V(G)  (v)

3. Untuk i = 1, 2, ......, n  1, lakukan:

a. Pilih garis e  E(G) dan e  E(T) dengan syarat:

i. e berhubungan dengan salah satu titik dalam T

ii. e memiliki bobot terkecil dibandingkan dengan semua garis yang 

berhubungan dengan titik-titik dalam T (misalkan titik w adalah

titik ujung e yang tidak berada dalam T)

b. Tambahkan e ke E(T) dan w ke V(T)

c. V(G) = V(G)  (w)
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Gunakan algoritma Prim untuk

mencari pohon rentang

minimum dari contoh 30.

Penyelesaian

e9 (5)

v1

v2

v3
v4

v5v6

v7

v8

e2 (5) e3 (15) e4 (3)

e5 (15)

e6 (18)

e7 (4)

e8 (5)

e1 (15)

e10 (15) e11 (15)

• Misalkan semula diambil titik v1

sehingga V(T) = [v1] dan E(T) = [ ]. 

Kemudian pada iterasi pertama, pilih

garis yang terhubung v1 dengan bobot

terkecil yaitu e2. 

Sehingga V(T) = [v1, v7] dan E(T) = [e2]  

v1

v7

e2 (5)

16

• Iterasi kedua, pilih garis ei  E(G) dan ei  E(T) yang terhubung dengan titik-titik

dalam V(T) dengan bobot terkecil. Ada 3 titik yang berbobot sama yaitu e1, e3 dan e5. 

Misalnya dipilih e1. Sehingga V(T) = [v1, v7 , v2] dan E(T) = [e2 , e1]  

v1

v2

v7

e2 (5)

e1 (15)

• Proses iterasi yang sama diulang-ulang hingga V(T) mememuat semua titik dalam G 

(atau jumlah iterasi adalah (n  1), dengan n jumlah titik dalam G). Didapatkan hasil 

seperti pada tabel.  

e9 (5)

v1
v2

v3
v4

v5v6

v7

v8

e2 (5) e3 (15) e4 (3)

e5 (15)
e6 (18)

e7 (4)

e8 (5)

e1 (15)

e10 (15) e11 (15)
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Keterangan

Titik yang 

di-

tambahkan

Garis 

yang 

dipilih

Iterasi

-v1-0

e9 (5)

v1

v2

v3
v4

v5v6

v7

v8

e2 (5) e4 (3)

e7 (4)

e8 (5)

e1 (15)

e10 (15)

• Bobot total baik dengan algoritma

Kruskal maupun algoritma Prim adalah

sama, yaitu 52

-v7e2 (5)1

Pilih antara e1, 

e3, e5

v2e1 (15)2

-v3e4 (3)3

Pilih antara e8 

dan e9

v4e8 (5)4

v6e7 (4)5

v5e9 (5)6

Pilih antara e5 

dan e10

v8e10 (15)7

18

• Bobot yang berhubungan dengan suatu garis pada graf dapat diaplikasikan pada graf

berarah dengan prinsip yang sama.

• Salah satu aplikasi graf berarah berlabel yang sering dipakai adalah mencari path 

terpendek antara 2 titik. 

• Elemen-elemen dari matriks hubung W yang digunakan untuk menyatakan graf berarah

berlabel menyatakan bobot garis.

• Secara umum, matriks hubung untuk graf berarah berlabel tidak simetris karena bobot

garis dari titik vi ke vj (= W(i, j) belum tentu sama dengan bobot garis dari titik vj ke vi

(= W(j, i), bahkan mungkin hubungan antara ke dua titik tersebut hanya searah.

• W(i, i) =  untuk semua i.
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• Algoritma ini merupakan algoritma sederhana dan mudah implementasinya.

• Masukan algoritma Warshall adalah matriks hubung graf berarah berlabel dan 

keluarannya adalah path terpendek dari semua titik ke semua titik. 

• Dalam usaha untuk mencari path terpendek, iterasi dimulai dari titik awalnya yang 

kemudian memperpanjang path dengan mengevaluasi titik demi titik hingga

mencapai titik tujuan dengan jumlah bobot seminimum mungkin.

• Misalkan W0 adalah matriks hubung graf berlabel mula-mula.

• W* adalah matriks hubung minimal dengan Wij* = path terpendek dari titik vi ke vj.

• Algoritma Warshall untuk mencari path terpendek adalah sebagai berikut:

20

1. W = W0

2. Untuk k = 1 hingga n, lakukan:

Untuk i = 1 hingga n, lakukan:

Untuk j = 1 hingga n, lakukan:

Jika W[i, j] > W[i, k] + W[k, j] maka

tukar W[i, j] dengan W[i, k] + W[k, j]

3. W* = W
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Carilah path terpendek dari titik

vi ke vj (i, j = 1, 2, ...., 6) graf

berarah berlabel pada gambar.

Penyelesaian

v1 v2 v3

v4 v5 v6

7 4

4

2

2

2

1

1

3
W � W� �

Matriks hubung dari graf adalah

sebagai berikut:

 7  2  v1

v2

v3 

v4 

v5

v6

v1 v2 v3 v4 v5 v6

  4  1 

     3

 4         

2  2   

 1         

22

Iterasi untuk k = 1

Untuk setiap sel matriks W dicek apakah W[i, j] > W[i, 1] + W[1, j]. Jika ya, maka W[i, j] 

diganti dengan W[i, 1] + W[1, j]. Contoh:

• W[1, 2] = 7, sedangkan W[1, 1] + W[1, 2] =  + 7 = .

• Karena W[1, 2] > W[1, 1] + W[1, 2], maka harga W[1, 2] tidak berubah.

• W[5, 4] = , sedangkan W[5, 1] + W[1, 4] = 2 + 2 = 4.

• Karena W[5, 4] > W[5, 1] + W[1, 4], maka harga W[5, 4] diubah menjadi 4.

• Ini berarti ada path dari v5 ke v4 melalui v1 yang memiliki bobot lebih kecil (yaitu path 

v5 v1 v4 dengan jumlah bobot 4)
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Dengan cara yang sama, nilai W[i, j] 

dihitung untuk setiap i dan j, 

sehingga didapatkan matriks:

��

��

��

��

�	

�


W� �

 7  2  

  4  1 

     3

 4    

2 9 2 4  

 1    

�� ��  ��   ��   �	   �


Iterasi untuk k = 2

Untuk setiap sel matriks W dicek apakah W[i, j] > W[i, 2] + W[2, j]. Jika ya, maka W[i, j] 

diganti dengan W[i, 1] + W[1, j]. Contoh:

• W[6, 5] = , sedangkan W[6, 2] + W[2, 5] = 1 + 1 = 2.

• Karena W[6, 5] > W[6, 2] + W[2, 5] , maka harga W[6, 5] diubah menjadi 2.

24

Dengan cara yang sama, nilai W[i, j] 

dihitung untuk setiap i dan j, 

sehingga didapatkan matriks:

��

��

��

��

�	

�


W� �

 7 11 2 8 

  4  1 

     3

 4 8  5 

2 9 2 4 10 

 1 5  2 

�� ��  ��   ��   �	   �


Iterasi untuk k = 3

Dengan cara yang sama, diperoleh matriks:
��

��

��

��

�	

�


W� �

 7 11 2 8 14

  4  1 7

     3

 4 8  5 11

2 9 2 4 10 5

 1 5  2 8

�� ��  ��   ��   �	   �
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��

��

��

��

�	

�


W� �

 6 10 2 7 13

  4  1 7

     3

 4 8  5 11

2 8 2 4 9 5

 1 5  2 8

�� ��  ��   ��   �	   �


Iterasi untuk k = 5

Dengan cara yang sama, 

diperoleh matriks:
��

��

��

��

�	

�


W	 �

9 6 9 2 7 12

3 9 3 5 1 6

     3

7 4 7 9 5 10

2 8 2 4 9 5

4 1 4 6 2 7

�� ��  ��   ��   �	   �


Iterasi untuk k = 4

Dengan cara yang sama, diperoleh

matriks:

26

��

��

��

��

�	

�


W
∗

� W
 �

�� ��  ��   ��   �	   �


Iterasi untuk k = 6

Dengan cara yang sama, diperoleh matriks: 9 6

3 7

9 2

3 5

7 12

1 6

7 4

7 4

7 9

7 9

5 3

5 10

2 6

4 1

2 4

4 6

7 5

2 7

Catatan:

Jika pada W* ada wij dengan nilai , hal ini berarti tidak ada path dari vi ke vj baik 

langsung maupun tidak langsung 
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• Misalkan G adalah graf berarah berlabel dengan titik-titik V(G) = [v1, v2, ....., vn] dan path 

terpendek yang dicari adalah dari v1 ke vn. Algoritma Dijkstraa dimulai dari titik v1. 

Dalam iterasinya, algoritma akan mencari satu titik yang jumlah bobotnya dari titik 1 

terkecil. Titik-titik yang terpilih dipisahkan, dan titik-titik tersebut tidak diperhatikan lagi 

dalam iterasi berikutnya.

• Misalkan: V(G) =  [v1, v2, ....., vn]

L =  Himpunan titik-titik  V(G) yang sudah terpilih dalam jalur

path terpendek.

D(j) =  Jumlah bobot path terkecil dari v1 ke vj

w(i, j) =  Bobot garis dari titik v1 ke vj

w*(1, j) =  Jumlah bobot path terkecil dari v1 ke vj

28

1. L = {    }; V = {v2, v3, ....., vn}

2. Untuk i = 2, ......, n, lakukan D(i) = W(1,i)

3. Selama vn  L, lakukan:

a. Pilih titik vk  VL dengan D(k) terkecil.

L = L  {vk}

b. Untuk setiap vj  VL, lakukan:

Jika D(j) > D(k) + W(k, j) maka ganti D(j) dengan D(k) + W(k, j) 

4. Untuk setiap vj  V, w*(1, j) = D(j)

Catatan: Menurut algoritma diatas, path terpendek dari titik v1 ke vn adalah melalui titik-

titik dalam L secara berurutan, dan jumlah bobot path terkecilnya adalah D(n).


