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Unsupervised Learning 

MMeetthhoodd  LLiimmiittaattiioonnss  

  PPCCAA  ü  Linear 
ü  Not optimal for non-Gaussian data 

  GGaauussssiiaann  MMiixxttuurree  MMooddeellss    
  KK--MMeeaannss  

ü  Require knowledge for the number of clusters  
ü  Challenging when applied to high-dimensional data 

  IICCAA  ü  Linear model 

  SSppaarrssee  CCooddiinngg  
  NNoonn--LLiinneeaarr  EEmmbbeeddddiinngg  ü  Shallow model (e.g., single-layer representation) 

  All these methods involve just one step of mapping! 
     à Mapping is shallow, not deep! 
     à Thus, not able to represent the complex mapping! 



Deep Learning – Why hot? 

  Deep mapping and representation 

Deeper representations 
→	abstractions 
→	disentangling 

Manifolds are expanded 
and flattened 

The following 5 slides edited from Dr. Yoshua Bengio’s tutorial 



Deep Learning – Why hot? 

  Deep mapping and representation 
–  Each level transforms the data into a 

representation, which can be easily modeled 
     Unfolding it more will map the original data  

   to a factorized (uniform-like) distribution 

PPeerrffoorrmmaannccee  iinnccrreeaassee  wwiitthh  llaayyeerrss  



Deep Learning – Why hot? 

Layer 1 

Layer 2 

Layer 3 

Parts combine to form objects 

  Successive model layers learn deeper intermediate representations 

  Prior: Underlying factors and concepts compactly expressed                      
without multiple levels of abstraction 



Neural Network – Why not working 

  Issues with previous neural network (NN) 
–  Gradient-based method à propagate errors from the last 

layer to the previous layers 
–  Last layer represents high nonlinear function (i.e., a jump 

function in binary classification) à unstable and large 
gradient in small range, but zero in most places 



Neural Network – Why not working 

  Effect of initial conditions in Deep Nets 

No two training trajectories end up in the 
same place à huge number of effective local 
minima 

PPrree--ttrraaiinniinngg::  Transfer knowledge from 
previous learning (representation and 
explanatory factors) à cases with few 
examples à shared underlying explanatory 
factors, between P(X) and P(Y|X) 

UUnnssuuppeerrvviisseedd  pprree--ttrraaiinniinngg  

RRaannddoomm  iinniittiiaalliizzaattiioonn  



Deep Learning – Why working now 

  Three main reasons 
–   New layer-wise training algorithm [Science 2006]  

  Each time, train on simple task 

–   Big data, compared to 20 years ago 
–   Powerful computers 

  Previous algorithms may be theoretically working, but practically 
not converged to good local minima with the previous less-
powerful computers 



Deep Learning 

Hidden 
layers 

Visible 
layer 

RBM 
(Restricted 
Boltzman 
Machine) 

Directed 
belief nets 

P(v, h1, h2, … , hl) = P(v|h1) P(h1|h2) …P(hl-2|hl-1) P(hl-1, hl)  



Deep Learning – Greedy Training 

v 

h 

W1 

  First step 
–  Construct an RBM with an input layer vv and a hidden layer hh  
–  Train the RBM 



Deep Learning – Greedy Training 

v 

h1 

W1 

W2 

h2 

Q(h1|v) 

  Second step 
–  Stack another hidden layer on top of the RBM to form a new RBM 
–  Fix WW11, sample hh11 from QQ((hh11||vv)) as input 
–  Train WW22 as RBM 



Deep Learning – Greedy Training 

v 

h1 

W1 

W2 

h2 

  Third step 
–  Continue to stack 

layers on top of 
the network, and 
train it as previous 
step, with samples 
sampled from 
from QQ((hh22||hh11))  

  And so on… 

h3 

W3 

Q(h1|v) 

Q(h2|h1) 



Deep Learning – Stacked Auto-Encoder 

Pretraining Unrolling Fine-tuning 



Deep Learning – Stacked Auto-Encoder 

The codes 
produced by 

2D LSA  

The codes 
produced by a 
500-250-125-2 
Auto-Encoder 

The fraction 
of retrieved 
documents 



AApppplliiccaattiioonn  11  
SSeeggmmeennttaattiioonn  

  Hippocampus Segmentation using 7T MRIs 
  Infant Brain Segmentation 



Hippocampus Segmentation Using 7T MR Images 

Hippocampus Segmentation 



Hippocampus Segmentation 

11..55TT//33TT  (1 x 1 x 1 mm3)  77..00TT (0.35 x 0.35 x 0.35 mm3) 

  Much richer structural information 
  Less partial volume effect 
  But, severe intensity inhomogeneity 

problem 

  Low imaging resolution 
  Low contrast 

  Challenges in hippocampus segmentation using 
1.5T/3T and 7T 

Hippocampus  
(≈35×15×7mm3)  

M. Kim, G. Wu, D. Shen, “Unsupervised Deep Learning for Hippocampus Segmentation in 7.0 Tesla MR 
Images,” MLMI, 2013. 



Hand-Crafted Features 

  Limited discriminative power of hand-crafted features  

Extracting patches from a 7T MR 
image 

a 

b c 
a b c 

Responses of Haar filters for the 
image patches 

Haar filters 

voxels 
in the 
image 

patches 



Hierarchical Feature Extraction via Unsupervised Deep Learning 

  Stacked two-layer convolutional ISA (Independent Subspace Analysis) 

… Basis filters WW’’  
in 2nd layer 

… Activations PP’’  
in 2nd layer 

2nd ISA layer 

… 

… … 

… Basis filters WW 
in 1st layer 

Activations PP 
in 1st layer 

Image 
patches XX  

1st ISA layer 

PCA 

… Dimension-reduced 
activations from 1st layer 

Learned basis filters by the 1st  ISA 



Multi-Atlas-based Segmentation using Deep Learning Features 

Training Stage 

segmentation 
result 

SSuubbjjeecctt  iimmaaggee  ssppaaccee  

Testing Stage 

… 

image patches 

2-layer ISA 

AAttllaass  ssppaaccee  22  

AAttllaass  ssppaaccee  NN  

Aligned 
training 
images 
in each 

atlas 
space, 
1…N 

probability map 

classification 
maps  1…N 

AAttllaass  ssppaaccee  11  
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Results 

Ground Truth Haar + Texture Features Hierarchical Features 

  P R RO SI 
 Hand-Crafted Haar + Texture Features 0.843 0.847 0.772 0.865 

 Hierarchical Patch Representations 0.883 0.881 0.819 0.894 

P = Precision; R = Recall; RO = Relative overlap; SI = Similarity index  

Comparison Results Using 20 Leave-One-Out Cases 



Multi-modality Isointense Infant Brain Image Segmentation 

Infant Brain Segmentation 



Infant Brain Segmentation 

W. Zhang, R. Li, H. Deng, L. Wang, W. Lin, S. Ji, D. Shen, “Deep Convolutional neural networks for multi-
modality isointense infant brain image segmentation,” Neuroimage, 2015. 

  Challenges in infant brain segmentation 
–  Low tissue contrast  
–  Low spatial resolution 

WM 
GM 
CSF 

2 weeks 3 months 6 months 9 months 12 months 

Infantile Isointense Adult-like 

WM and GM exhibit almost the same level 
of intensity in both T1 and T2 MR images 



Deep Convolutional Neural Network (CNN) 

T1	

T2	

FA	

Multi-modality 
images 

Tissue 
segmentation 

CSF	

GM	

WM	



Results 

Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5 Subj. 6 Subj. 7 Subj. 8 

CSF 

CNN 0.83 0.83 0.83 0.84 0.85 0.85 0.82 0.83 

RF 0.82 0.81 0.83 0.81 0.83 0.85 0.79 0.80 

SVM 0.74 0.77 0.77 0.74 0.70 0.78 0.72 0.73 

CLS 0.81 0.82 0.73 0.86 0.84 0.82 0.81 0.83 

MV 0.71 0.69 0.68 0.63 0.63 0.61 0.69 0.69 

GM 

CNN 0.85 0.86 0.88 0.82 0.81 0.87 0.86 0.86 

RF 0.83 0.85 0.88 0.81 0.80 0.85 0.85 0.84 

SVM 0.79 0.80 0.83 0.75 0.74 0.80 0.80 0.80 

CLS 0.83 0.84 0.85 0.83 0.81 0.87 0.86 0.84 

MV 0.85 0.84 0.85 0.80 0.78 0.80 0.84 0.83 

WM 

CNN 0.88 0.81 0.88 0.85 0.87 0.87 0.87 0.88 

RF 0.86 0.78 0.87 0.84 0.85 0.86 0.84 0.84 

SVM 0.82 0.74 0.76 0.80 0.80 0.79 0.71 0.76 

CLS 0.84 0.81 0.80 0.82 0.84 0.82 0.83 0.81 

MV 0.86 0.80 0.85 0.82 0.84 0.84 0.84 0.84 

Segmentation performance in terms of Dice ratio achieved by the CNN, RF, SVM, CLS, MV 

CNN: Convolutional Neural Network 
RF: Random Forest 
SVM: Support Vector Machine 
CLS: Coupled Level Sets 
MV: Majority Voting  



Results 

Original multi-modality data (T1, T2 and FA) 

Manual segmentations (CSF, GM, and WM)	

Segmentation results by CNN 

Segmentation results by RF 


